On the Kähler-Hodge structure of superconformal manifolds
نویسندگان
چکیده
We show that conformal manifolds in $d\geq 3$ field theories with at least 4 supercharges are K\"ahler-Hodge, thus extending to 3d ${\cal N}=2$ and 4d N}=1$ similar results previously derived for N}=4$ various types of 2d SCFTs. Conformal SCFTs equipped a holomorphic line bundle L}$, which encodes the operator mixing under marginal deformations. Using perturbation theory superconformal Ward identities, we compute curvature L}$ generic point on manifold. K\"ahler form Zamolodchikov metric is proportional first Chern class constant proportionality given by two-point function coefficient stress tensor, $C_T$. In cases where certain additional conditions about nature singular points manifold hold, this implies quantization condition total volume
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولthe effects of changing roughness on the flow structure in the bends
flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...
Kähler (& Hyper-kähler) Manifolds
These notes are based on two talks given at the Arithmetic & Algebraic Geometry Seminar of the Korteweg-de Vriesinstituut for mathematics of the Universiteit van Amsterdam. They are intended to give a short introduction to the theory of Kähler manifolds, with a slight focus of applicability to the subject of K3 surfaces. However, they also include other interesting results not related to K3 sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2022
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep09(2022)104